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1 Introduction

The importance of Fredholm structures has for some time been recognized in
the theory of holomorphic operator-valued functions and extensive work has been
accomplished in this area as seen, for instance, in [14–17, 37] (see also the many
references cited therein). Related studies involve the Grassmann models of systems-
control theory as studied in e.g. [8, 18, 19]. In the background stands another substan-
tial amount of research concerning the structure of spaces of projections in Banach
algebras and their associated manifolds, providing essential techniques for operator-
theorists; references to this subject include [3, 7, 10–12, 30]. Grassmannians with
Fredholm structure also feature in the Riemann–Hilbert and elliptic transmission
problems as studied in [6, 21] in which C*-algebra techniques are also incorporated.

On the other hand Grassmann models in both finite and infinite dimensions are
essential objects of study in algebraic geometry, integrable systems, and in other
areas of mathematics. This paper provides some new insight into the operator-
theoretic approach and techniques of integrable systems along a commutative to
a noncommutative route. The initial commutative objects concern the Burchnall–
Chaundy ring of formal pseudodifferential operators which plays a significant role
in the theory of the Kadomtsev–Petviashvili (KP) hierarchy and related integrable
systems. A fundamental work of Sato [34] relates such rings of operators to the
Korteweg–de Vries (K–dV) equation [34] where solutions of the latter correspond
to points in an infinite dimensional Grassmannian. The interpretation and further
implications of the Sato Grassmannian were unfolded with technical depth in [35]
(which [32] extends to vector Grassmannians). Because of its analytic (Fredholm)
structure, the Grassmann model of [35] has further provided a valuable technique in
studying many types of integrable systems and infinite-dimensional Lie algebras (see
e.g. [1, 25, 27, 31]). An operator-theoretic account on the fringe of these topics can
be found in [18] where, among various applications, it is observed that solution flows
of equations such as the K–dV arise on shift-invariant subspaces of certain Banach
spaces.

The range of ideas at stake suggested a further technical calibration of the
prevailing geometric correspondences in a relatively new direction. Specifically, to
determine the role that operator algebras may play in order to cover the yet-
unclassified algebras of partial differential operators that are (in principle) linked
to the algebraic-geometric study of multidimensional spectral varieties and the
moduli spaces of vector bundles. Whereas the latter almost exclusively concern
‘formal solutions,’ it is interesting to adopt a function-theoretic framework that
may create a bridge towards the burgeoning field of noncommutative geometry. In
quest of such a connection we start here by examining the interplay between the
commutative Burchnall–Chaundy rings and the generally noncommutative nature of
the corresponding algebras of operators over certain Hilbert modules. The theme
and main results of this paper perhaps best encapsulate one part of the prospective
development by realizing the former as conjugated (with some dexterity) into
subrings of the latter. It is somewhat in the spirit of how the infinite matrices of [34]
and differential operators of the Burchnall–Chaundy ring are in a ‘boson-fermion
correspondence,’ thanks to implementing the Baker function, a function which from
the operator-theoretic point of view seems to have been curiously overlooked. A
particular aspect of our approach concerns applying the general construction of the
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Stiefel bundle concept as definable over a topological algebra (in fact, over a possibly
noncommutative ring). This construction has featured in a series of papers [9–13](see
also the references therein) and can be adapted to various classes and categories
of differentiability. More specifically, it is within this setting that we interpret the
relevant conjugation principles of [32, 35] where Baker functions are employed.
Certain generalizations of [32, 35] to several variables are studied in papers such as
[28, 29] (see also the survey article [33] and references therein). Although this latter
work is essentially algebraic-geometric, we outline how the analogous conjugation
results can be seen within the proposed setting of operator theory.

2 Algebraic Preliminaries

2.1 The Space of Idempotents P(A) and the Grassmannian Gr(A)

Our references for this section are mainly [10, 12] (and references therein).
To commence, let A be a monoidal (multiplicative) semigroup with group of units

denoted by G(A). Let

P(A) := {p ∈ A : p2 = p}, (2.1)

that is, P(A) is the set of idempotent elements in A (for suitable A, we can regard
elements of P(A) as projections). Recall that the right Green’s relation is pRq if and
only if pA = qA for p, q ∈ A.

Let Gr(A) = P(A)/R be the set of equivalence classes in P(A) under R . As the
set of such equivalence classes, Gr(A) will be called the Grassmannian of A. Relative
to a given topology on A, Gr(A) is a space with the quotient topology resulting from
the natural quotient map

� : P(A) −→ Gr(A). (2.2)

Let h : A −→ B be a semigroup homomorphism. Then it is straightforward to see
that the diagram below is commutative:

P(A)
P(h)

��

�

��

P(B)

�

��
Gr(A)

Gr(h)
�� Gr(B)

(2.3)

2.2 The Space of Partial Isomorphisms W(A)

Definition 2.1 We say that u ∈ A is a partial isomorphism if there exists a v ∈ A such
that uvu = u and vuv = v, in which case we call v a relative inverse (or pseudoinverse)
for u. In general such a relative inverse is not unique. We take W(A) to denote the
set (or space, if A has a topology) of all partial isomorphisms of A.
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If u ∈ W(A) has a relative inverse v, then clearly v ∈ W(A) with relative inverse
u, and it is easy to see that both vu and uv belong to P(A). Although v is not uniquely
determined by u alone, it is uniquely determined once u, vu and uv are all specified
[10].

If p ∈ P(A), then we take W(p, A) ⊂ W(A) to denote the subspace of all partial
isomorphisms u in A having a relative inverse v satisfying vu = p. Likewise, W(A, q)

denotes the subspace of all partial isomorphisms u in A having a relative inverse
v satisfying uv = q, so that we have W(A, q) = W(q, Aop). Now for p, q ∈ P(A),
we set

W(p, A, q) = W(p, A) ∩ W(A, q)

= { u ∈ qAp : ∃ v ∈ pAq , vu = p and uv = q }. (2.4)

Remark 1 A partial isomorphism is equivalently a pseudoregular element, a nomen-
clature sometimes used in the literature.

2.3 The Space of Proper Partial Isomorphisms V(A)

Recall that two elements x, y ∈ A are similar if x and y are in the same orbit under
the inner automorphic action ∗ of G(A) on A . For p ∈ P(A), we say that the orbit
of p under the inner automorphic action is the similarity class of p and denote the
latter by Sim(p, A), whereby it follows that Sim(p, A) = G(A) ∗ p.

Definition 2.2 Let u ∈ W(A) . We call u a proper partial isomorphism if for some
W(p, A, q), we have u ∈ W(p, A, q) where p and q are similar. We take V(A) to
denote the space of all proper partial isomorphisms of A.

Observe that G(A)V(A) and V(A)G(A) are both subsets of V(A) . In the
following we set G(p) = G(pAp).

2.4 The Spaces V(p, A) and Gr(p, A)

If p ∈ P(A), then we denote by V(p, A) the space of all proper partial isomorphisms
of A having a relative inverse v ∈ W(q, A, p) for some q ∈ Sim(p, A). With refer-
ence to (2.4) this condition is expressed by

V(p, A) :=
⋃

q∈Sim(p,A)

W(p, A, q). (2.5)

Notice V(p, A) ⊂ V(A) ∩ W(p, A), but equality may not hold. Clearly, we have
G(A) · p ⊂ V(p, A) and just as in [10] it can be shown that equality holds if A is a
ring. The image of Sim(p, A) under the map � defines the space Gr(p, A) viewed as
the Grassmannian naturally associated to V(p, A).
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For a given unital semigroup homomorphism h : A −→ B, there is a restriction of
(2.3) to a commutative diagram:

V(p, A)
V(p,h)

��

�A

��

V(q, B)

�B

��
Gr(p, A)

Gr(p,h)
�� Gr(q, B)

(2.6)

where for p ∈ P(A), we have set q = h(p) ∈ P(B). Observe that in the general
semigroup setting, V(p, A) properly contains G(A)p. In fact, if p ∈ P(A), then
V(p, A) = G(A)G(pAp) (see [12] Lemma 2.3.1).

Let H(p) denote the isotropy subgroup for this left-multiplication. We have then
the coset space representation Gr(p, A) = G(A)/G(�(p)) where G(�(p)) denotes
the isotropy subgroup of �(p). Then there is the inclusion of subgroups H(p) ⊂
G(�(p)) ⊂ G(A), resulting in a fibering V(p, A) −→ Gr(p, A) given by the exact
sequence

G(�(p))/H(p) ↪→ G(A)/H(p) −→ G(A)/G(�(p)), (2.7)

generalizing the well-known Stiefel bundle construction in finite dimensions.

Remark 2 It is clear that the above constructions are purely algebraic and follow
from the development of [10] Sections 3–7 and [12] Sections 1–2. For A a Banach
algebra, the map � : P(A) −→ Gr(A) is open, a fact also deduced in [30] which
considers the structure of Gr(A) but from a different viewpoint.

2.5 Specialization to a Banachable Algebra

Most often A will be taken to be a subsemigroup of a ring of operators, or, of
the partial isomorphisms of a topological algebra [36]. The latter include Fréchet
algebras (such as the �-algebras considered in [16]), as well as the Banachable
algebras, a class of topological algebras whose underlying vector space is a Banach
space. Clearly, any Banach algebra satisfies this latter property. Other examples
include the Jordan–Lie algebras whose underlying vector spaces are Banach spaces
(the JLB-algebras studied in [24]).

As shown in [10], the Banachable assumption on A is necessary to endow a
Banach analytic manifold structure on the space in question. In this case, V(p, A)

may be viewed as a space of framings for elements of Gr(p, A) . In particular, we
recall from [10] Section 7 that on setting G(p) = G(pAp), we have Gr(p, A) =
V(p, A)/G(p), and there is a (locally trivial) principal fibration

G(p) ↪→ V(p, A) −→ Gr(p, A). (2.8)

Thus the homogeneous fibration (2.7) becomes an analytic locally trivial fibration for
the relevant category of differentiability (the reader may wish to consult [11] to see
how the situation looks in the holomorphic category for instance). Also, on setting
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p̂ = 1 − p, there is the following expression for the (pointwise) decomposition of
tangent spaces:

TGr(p, A) = pAp̂ + p̂Ap. (2.9)

2.6 The Spatial Correspondence

Returning to the general case, if A is a given topological algebra and E is some A-
module, then A = LA(E) could be taken to be the ring of A-linear transformations
of E. An example is when E is a complex Banach space and A = L(E) is the Banach
algebra of bounded linear operators on E. In order to understand the interface
between spaces such as Gr(p, A) and the usual Grassmannians of subspaces (of a
vector space E), we will describe a ‘spatial correspondence.’

Given a topological algebra A, suppose E is an A-module admitting a
decomposition

E = F ⊕ Fc , F ∩ Fc = {0}, (2.10)

where F, Fc are closed subspaces of E . We have already noted A = L(E) as the
ring of linear transformations of E. Here p ∈ P(E) = P(L(E)) is chosen such that
F = p(E), and consequently Gr(A) consists of all such closed splitting subspaces.
The assignment of pairs (p,L(E)) �→ (F, E), is called a spatial correspondence, and
so leads to a commutative diagram

V(p,L(E))
ϕ

��

�

��

V(p, E)

�

��
Gr(p,L(E))

=
�� Gr(F, E)

(2.11)

where V(p, E) consists of linear homomorphisms of F = p(E) onto a closed splitting
subspace of E similar to F. In particular, the points of Gr(p,L(E)) are in a 1 : 1
correspondence with those of Gr(F, E) .

Our description so far reveals a framework for considering just about all species of
Grassmannians employed in geometry and analysis (including, of course, the usual
finite-dimensional ones). We will proceed to make the necessary specializations as
the situation arises.

Example 2.1 The following relates to the Grassmann model of [34]. Let C∞ = C(N)

denote the space of all finite sequences {zk}, zk ∈ C, and Gk(C
∞) the Grassmannian

of all k-dimensional linear subspaces of C∞ . The Stiefel manifold Vk(C
∞) is the

manifold of all k-frames, that is, the set of all injective linear maps Ck −→ C∞.
Specifically

Vk(C
∞) = {� ∈ L(Ck, C

∞) : �t ◦ � ∈ GL(k, C)}. (2.12)
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Following e.g. [22] (Theorem 47.5), we observe that an embedding Ck −→ C∞,
induces in the inductive limit, the embeddings

Vk(C
∞) = lim−→

N

Vk(C
N),

Gk(C
∞) = lim−→

N

Gk(C
N). (2.13)

The situation considered in [34] (c.f. [35]) is essentially that of N = 2n and k = n (for
some n). We will recall several features of this work in the following section(s).

3 Fredholm Grassmannians

Here we will consider several important restrictions of the fibration V(p, A) −→
Gr(p, A) when A is a certain Banach algebra. To proceed, we denote by L(E, F),
the Banach space of bounded linear operators between complex Banach spaces E
and F, and when E = F, L(E) denotes the resulting complex Banach algebra. The
space of Fredholm operators when definable on a space Z , is denoted by Fred(Z ).

3.1 The Schatten Classes

We refer to [25, 31] for the following facts which are relevant to our situation. Given
a pair of Hilbert spaces (H1, H2) and 1 ≤ α < ∞, we denote by Lα(H1, H2) the
α–Schatten ideal in L(H1, H2) of adjoinable linear operators T : H1 → H2, satisfying

‖T‖α
α = Tr(T∗T)

α
2 < ∞. (3.1)

The Lα(H1, H2) are Banach spaces and form an increasing chain of ideals within
the compact operators denoted by L∞(H1, H2). For instance, the case α = 1 corre-
sponds to trace class operators when H1 = H2, and α = 2 corresponds to the Hilbert–
Schmidt operators (whereby L2(H1) is a Hilbert space).

Suppose H is a complex separable Hilbert space admitting a decomposition
H = H1 ⊕ H2 of the type (2.10), where H1 and H2 are infinite dimensional closed
subspaces with H1 ∩ H2 = {0}. For s ≥ 1, consider the group of invertible bounded
operators defined by

GLs =
{[

a b
c d

]}
, (3.2)

where a ∈ Fred(H1), b ∈ L2s(H2, H1), c ∈ L2s(H1, H2), d ∈ Fred(H2). We define
GL0 to consist of those elements for which b and c are finite rank operators.
With suitable metric topologies, each GLs is a complex analytic Banach Lie group
modeled on the appropriate Banach space, and there is a chain of embeddings GL0 ⊂
GL1 ⊂ · · · ⊂ GL∞, where for s′ ≤ s, each GLs′ is dense in GLs. There is also a
corresponding chain of embeddings of Banach analytic Lie groups given by GL0 ⊂
GL1 ⊂ · · · ⊂ GL∞, where for s ≥ 1, GLs consists of all invertible linear operators on
H of the form T − 1 ∈ Ls(H1, H2).
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Let �s be the subgroup of block triangular operators in GLs where c = 0. This
leads to defining the Grassmannian Grs(H1, H) = GLs/�s for which �s is the
stabiliser of the subspace H1. Elements of Grs(H1, H) may be viewed as closed
subspaces W = g · H1, for some g ∈ GLs as in (3.2), which split H and which are
similar to H1. In this way, Grs(H1, H) can be seen to be a Banach manifold modeled
on the Banach space L2s(H1, H2), and is thus an example of the Banach manifold
Gr(F, E).

For elements W ∈ Grs(H1, H), there are certain bases called admissible bases
which, loosely speaking, allow us to make sense of a determinant det W, in part
thanks to the group GLs. The relevant space V(p, A) is the Stiefel manifold of
admissible bases denoted by Vs(H1, H), for which there is a principal GLs-bundle

GLs ↪→ Vs(H1, H) −→ Grs(H1, H), (3.3)

being the restriction to such bases of the locally trivial principal GL(H)-bundle given
by (2.8).

3.2 The Banach Algebra A = LJ(H)

Let H be a separable complex Hilbert space admitting an orthogonal direct sum
decomposition H = H+ ⊕ H−, where the H± are closed subspaces, for which the
decomposition is specified by a unitary operator J : H → H such that J|H± =
±1. In the context of the preceding example, we now consider (without loss of
generality) the case s = 1 and set Gr1(H+, H) = Ĝr(H+, H). Relative to Ĝr(H+, H),
we consider closed splitting subspaces W that are commensurable with H+ (that is,
for which W ∩ H+ has finite codimension in both W and H+). Specifically, elements
of Ĝr(H+, H) consist of closed subspaces W ⊂ H such that:

(1) The orthogonal projection p+ : W −→ H+ is Fredholm, and
(2) The orthogonal projection p− : W −→ H− is Hilbert–Schmidt .

The subspaces W ∈ Ĝr(H+, H) on which p+ is an isomorphism, form a dense open
subset of the latter which is called the big cell.

The relevant algebra to consider for these Grassmannians is A = LJ(H), the
Banach algebra of bounded linear operators T : H → H such that [J, T] is a Hilbert–
Schmidt operator. The relevant norm ‖ ‖J is defined by

‖T‖J = ‖T‖ + ‖[J, T]‖2. (3.4)

Together with the topology induced by ‖ ‖J , the group of units G(A) is a complex
Banach Lie group. Now the subgroup of unitaries U(A) ⊂ G(A) acts transitively on
Ĝr(H+, H), and consequently G(A) is seen to be identifiable with GL1 following
(3.2) (see [31] Sections 6.2, 7.1).

For our purposes we will often deal directly with the Banach algebra A . For
the appropriate choice of p ∈ P(A) ⊂ A such that p ∈ Sim(p+, A), we will identify
Gr(p, A) with Ĝr(H+, H) via the spatial correspondence. Further, the Banach Lie
group G(p) = G(pAp) is identified with GL1, and elements w = {wi} ∈ V(p, A), are
viewed as admissible bases for W as above, and are preserved under G(p) = GL1. In
view of (3.3) for the case s = 1, we have

Gr(p, A) = V(p, A)/G(p) = G(A)/G(�(p)) , (3.5)
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whereby Gr(p, A) is a complex Hilbert manifold modeled on L2(H+, H−). We also
have the universal bundle E(p, A) −→ Gr(p, A) which is the holomorphic Hilbert
bundle associated to the principal bundle V(p, A) −→ Gr(p, A) (a more general
situation is considered in [11]). For tangent spaces (pointwise), we have the complex
type decomposition

TCGr(p, A) = T ′Gr(p, A) ⊕ T ′′Gr(p, A), (3.6)

where for W = p(H) ∈ Gr(p, A) we deduce from (2.9):

T ′
WGr(p, A) ∼= HomC(W, W⊥) ∼= pAp̂ ,

T ′′
WGr(p, A) ∼= HomC(W⊥, W) ∼= p̂Ap . (3.7)

4 Subrings of Formal Pseudodifferential Operators

In this section we will start on the ‘commutative’ side of the picture by considering
certain rings of pseudodifferential operators as studied in [32, 35].

4.1 The Burchnall–Chaundy Ring of Formal Pseudodifferential Operators

Let B denote the algebra of analytic functions U −→ C where U is a connected open
neighbourhood of the origin in C . The (generally noncommutative) algebra B[∂] of
linear differential operators with coefficients in B, consists of expressions

N∑

i=0

ai ∂ i , (ai ∈ B , for some N ∈ Z). (4.1)

Here ∂ ≡ ∂/∂x and the ai can be regarded as multiplication operators for which
multiplication is defined by

[∂, a] = ∂a − a∂ = d(a) ≡ ∂a/∂x. (4.2)

Let A denote a commutative subalgebra of B[∂] . The rank of A is defined to be the
greatest common divisor of all orders of the operators in A . For instance, given an
operator of the form

L0 = ∂r + ur−2 ∂r−2 + . . . u1 ∂ + u0, (4.3)

the algebra C[L0] has rank equal to r.
Next we proceed to the algebra B[∂−1] of formal pseudodifferential operators

with coefficients in B . This algebra is obtained from B[∂] by formally inverting the
operator ∂ . Thus P ∈ B[∂−1] may be written as

P =
N∑

i>−∞
ai ∂ i. (4.4)

The operator P admits a decomposition P = P+ + P−, where

P+ =
N∑

i=0

ai ∂ i , P− =
−1∑

i>−∞
ai ∂ i. (4.5)
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4.2 The Formal Baker Function ψW

Recall that the nth generalized K–dV-hierarchy consists of all evolution operators
for n − 1 unknown functions u0(x, t), . . . , un−2(x, t) that can be expressed as

∂L
∂ t

= [P, L], (4.6)

where L ∈ B[∂−1] is an nth order differential operator

L = ∂n + un−2 ∂n−2 + . . . u1 ∂ + u0, (4.7)

and P is a differential operator for which ord [P, L] ≤ (n − 2) . In order to study
the evolution of eigenfunctions of L via comparison with the constant operators ∂n,
we want to find an operator K conjugating L such that K(L)K−1 = ∂n . So if ψ0 is
an eigenfunction of ∂n, then ψ = Kψ0 will consequently be an eigenfunction of L .
Following [35] Section 4, there exists such an operator K ∈ B[∂−1] given by

K = 1 +
∞∑

i=1

ai(x) ∂−i, (4.8)

which is determined up to right multiplication by a constant coefficient operator of
the form 1 + c1 ∂−1 + . . . (noting that only constant coefficient operators commute
with ∂n).

Starting from the Hilbert space H = L2(S1,Cn), we recall the Banach algebra A =
LJ(H) and the Fredholm Grassmanian Ĝr(H+, H) = Gr(p, A) . We next consider
an exclusive class of eigenfunctions obtained from the development of [35] Section
5. Let D be the closed unit disc and denote by 
+ the group of holomorphic maps
g : D −→ C∗, such that g(0) = 1. The group 
+ acts on Ĝr(H+, H) via multiplication
operators on H, and for each W ∈ Ĝr(H+, H), we define a dense open subset of

+ by


W
+ = {g ∈ 
+ : g−1W is transverse to H−} . (4.9)

We also define 
− as the group of holomorphic maps of the form g
(

1
z

)
where g ∈ 
+ .

It can be seen that 
− acts freely and transitively on Ĝr(H+, H) = Gr(p, A) (recall
that p ∈ Sim(p+, A)) .

Now for a given g ∈ 
W+ there exists a unique hg ∈ 
− determined by W, satisfying
the relation g−1W = hg H+, that is,

W = ghg H+. (4.10)

Accordingly, there exists a function ψW = ψW(x, z) given by

ψW = ψW(x, z) = g(z)

(
1 +

∞∑

i=1

ai(g) z−i

)
, (4.11)

where the ai are analytic functions on 
W+ extending to meromorphic functions on
all of 
+ . The function ψW is the unique function of that type lying in g−1W, and
via orthogonal projection pg

+ : g−1W −→ H+, we have ψW = (pg
+)−1(1). Further, the

g ∈ 
+ can be expressed uniquely as

g(z) = exp(xz + t2z2 + t3z3 + · · · ), (4.12)
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so that ψW = ψW(x, z; t2, t3, . . .) .
We call ψW the (formal) Baker function of the subspace W ∈ Ĝr(H+, H). Accord-

ingly, there exists a unique differential operator Pn such that

PnψW = znψW . (4.13)

Furthermore, the operator Pn admits the conjugation property Pn = K(∂n)K−1.

4.3 First Conjugation Result

In order to simplify the exposition, we will relax temporarily the dependence on the
variables (t2, t3, . . .), and so ψW = ψW(x, z) unless otherwise stated.

We start by considering the eigen-equation Lψ = znψ which admits a formal
power series solution as determined by the Baker function

ψ = exz

(
1 +

∞∑

i=1

ai(x) z−i

)
, (4.14)

which is unique up to multiplication with constant coefficients of the form 1 +
c1 z−1 + . . ..

It will be sufficient to deal with the case n = 1, and take an operator L of order 1
in a commutative subring Â ⊂ B[∂−1], such that L is given by

L = ∂ +
−1∑

i>−∞
ui ∂ i. (4.15)

Using the elegant idea of [34], the correspondence ‘
(

∂
∂x

)−1 ↔ multiplication by
z,’ here realizes commutative subrings Â ⊂ B[∂−1] as subrings of C[[z]][z−1] . Thus
for H = L2(S1, C) and the Banach algebra A = LJ(H), we establish the following
preliminary result which may be seen as an interpretation of [34, 35] in terms of the
relevant algebras.

Theorem 4.1 Given the Baker function ψW associated to a subspace W ∈ Ĝr(H+, H),
the ring Â ⊂ B[∂−1], conjugates as a subring into the Banach algebra A = LJ(H) up
to constant coefficient operators.

Proof We start with the subspace W ∈ Ĝr(H+, H) = Gr(p, A) given by (4.10) , and
consider the assigned Baker function ψW = ψW(x, z) . We can assume that W belongs
to the big cell, so under the orthogonal projection pg

+ : W −→ H+ , we have ψW =
(pg

+)−1(1) . For P ∈ Â , ∂ = ∂
∂x , we assign P

(
∂
∂x

)
to f (z−1) via

P
( ∂

∂x

)
ψW = f (z−1)ψW . (4.16)

The form of W given by (4.10) and the definition of ψW lead to ψW = Wezx . With L
as in (4.15), the relevant eigenvalue problem of (4.13) LψW = zψW , thus corresponds
to ∂(ezx) = zezx.
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Recall from (4.8), we have K = 1 + ∑∞
i=1 ai(x) ∂−i, such that each L ∈ Â satisfies

the conjugation property L = K(∂)K−1 . Comparing this with (4.10) and (4.11), we
can write K = hg(∂), for hg ∈ 
− . Thus via the assignment ∂ �→ z−1, we obtain

L �→ hg(z−1) (z−1) (hg(z−1))−1. (4.17)

Since the hg was uniquely determined by the W ∈ Gr(p, A), the latter therefore
determines the conjugation of Â into a commutative subring of A. �

Theorem 4.1 is a theme on which we shall perform certain variations, but in stages
of generality. Implicit in the proof of Theorem 4.1 is the fact that the KP-hierarchy
is manifestly a sequence of deformations for L = K(∂)K−1 , K ∈ Â, whereby the
Baker (eigen)function ψW = Wezx converts differentiation into multiplication. As
shown explicitly in [2] (see also [32, 35]), the solution flow of LψW = zψW , arises on
subspaces W for which the vectors

(ψW, ∂ψW, . . . , ∂k−1ψW, . . .)|x=0 , (∂ ≡ ∂/∂x), (4.18)

comprise a basis for W, the so-called ‘admissible bases’ which will be discussed at a
later stage.

5 Grassmannians Over Hilbert C*-modules

5.1 Standard Operators on Hilbert C*-modules

Let us start by describing some basic properties of Hilbert modules over C*-algebras.
We shall skip some of the usual elementary definitions since we will be restricting
our discussion to a particular class; thus the reader is referred to e.g. [5, 23, 24] for a
comprehensive account of the subject.

Consider a unital C*-algebra A and the standard (free countable dimensional)
Hilbert module HA over A as given by

HA = {{ζi} , ζi ∈ A , i ≥ 1 :
∞∑

i=1

ζiζ
∗
i ∈ A } ∼= ⊕Ai, (5.1)

where each Ai represents a copy of A .

Example 5.1 Suppose H is a separable Hilbert space. We can form the algebraic
tensor product H ⊗alg A on which there is an A-valued inner product

〈x ⊗ ζ , y ⊗ η〉 = 〈x, y〉 ζ ∗η , x, y ∈ H , ζ, η ∈ A. (5.2)

Thus H ⊗alg A becomes an inner product A–module whose completion is denoted
by H ⊗ A . Given an orthonormal basis for H, we have the following identification
(unitary equivalence) given by H ⊗ A ≈ HA (see e.g. [23]).

There is also a natural A-valued scalar product on HA leading to classes of
bounded linear operators on HA (as studied in e.g. [26]). Let A0 = L(HA) denote
the space of A-linear bounded operators with A-linear bounded adjoints. Then A0
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is a C*-algebra whose group of units G(A0) retracts onto the subgroup of unitaries
U(A0) = U(HA) . In this case we have the space of projections

P∗(A0) = {p ∈ A0 : p = p2 = p∗ and p ∼ 1 ∼ p̂}, (5.3)

where ‘∼’ denotes the Murray–von Neumann equivalence of projections (see e.g.
[5]), and we recall that p̂ = 1 − p.

Compact linear operators on HA are defined as A-norm limits of finite rank
operators (c.f. examples such as the spaces Gr0 in [35]). The space of such compact
operators is denoted by K(HA) . Finite-rank A-submodules of HA are well-defined
and a Fredholm operator on HA is one whose kernel and image are finite-rank A-
submodules. We denote the space of such Fredholm operators by Fred(HA) . There
exists a canonical index homomorphism

IndA : Fred(HA) −→ K0(A), (5.4)

where K0(A) denotes the topological K-group of A (see e.g. [5]).

5.2 The Grassmannian Ĝr(H+, HA)

Since A0 = L(HA) is a Banach algebra, we can consider the Grassmannians
Gr(p, A) for suitable p ∈ P(A) . Towards a generalization, we will consider the
Banach algebra LJ(HA) where J is a unitary A-module map, J2 = 1, determining
the splitting of Hilbert A-modules HA = H+ ⊕ H−. An important example is the
generalized Fredholm Grassmannian Ĝr(H+, HA) as studied in [21]. It is a Banach
manifold modeled on the Banach space K(HA), and its unitary and topological
structures can be determined in a way similar to that of Ĝr(H+, H) (in the case
of A = C) as in [31]. Specifically, we fix a direct sum decomposition of Hilbert A-
modules HA = H+ ⊕ H−, where H± are isomorphic to HA as A-modules. Then
elements of Ĝr(H+, HA) consist of A-submodules W of HA such that:

(1) The orthogonal projection p̃+ : W −→ H+ is in Fred(HA), and
(2) The orthogonal projection p̃− : W −→ H− is in K(HA).

We define the big cell of Ĝr(H+, HA) as the collection of all A-submodules W of HA
such that the projection p+ is an isomorphism.

Suppose we fix a path component Ĝr(γ ) of Ĝr(H+, HA) corresponding to an
element γ ∈ K0(A) where γ equals the index of p+ restricted to an element V
of this component. Then we can consider pairs (α, β) ∈ K0(A) × K0(A) for which
γ = α − β. Given any such pair, we denote by Bα,β the subset of all V ∈ Ĝr(γ ) for
which

[ker p+|V] = α, [coker p+|V] = β. (5.5)

Then following [21] there is a generalized Birkhoff stratification:

Ĝr(γ ) =
⋃

α,β

Bα,β . (5.6)

Furthermore, the Bα,β are Banach analytic subspaces of Ĝr(H+, HA) and the
expression in (5.6) describes a complex analytic stratification of Ĝr(H+, HA).
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6 The Conjugation with Generalized Coefficients

6.1 Generalization of Theorem 4.1

Let A be a (unital) C*-algebra. Given a separable Hilbert space H, we will adopt the
Hilbert C*-module of Example 5.1 where we have the unitary equivalence H ⊗ A ≈
HA together with the direct sum decomposition of Hilbert A-modules HA = H+ ⊕
H− for which H± ∼= HA . In the following we set

Ã = A ⊗ A, where A = LJ(H). (6.1)

Without too much loss of generality, we keep with the separable Hilbert space
H = L2(S1, C). We will also use the identification Ĝr(H+, HA) = Gr( p̃, Ã) with
p̃ ∈ Sim( p̃+, Ã) where p̃+ ∈ Fred(HA) is the orthogonal projection as previously.

Here we take an operator L of order 1 in the ring Â ⊂ B[∂−1] ⊗ A with coeffi-
cients ui ∈ B ⊗ A, such that L is given by

L = ∂ +
−1∑

i>−∞
ui ∂ i, (∂ ≡ ∂/∂x). (6.2)

Definition 6.1 Let 
+(A) be the group of maps g : D −→ G(A) such that g(z) is
holomorphic in z ∈ D, and g(0) = 1.

Definition 6.2 Let 
−(A) be the group of maps g : C\Int D −→ G(A) such that g(z)

is holomorphic in z ∈ C\Int D, g(∞) = 1.

Definition 6.3 Let 
W̃+ (A) be a dense open subset of 
+(A) defined by


W̃
+ (A) = {g ∈ 
+(A) : g−1W̃ is transverse to H−}.

Lemma 6.1 The group 
−(A) acts freely and transitively on Gr( p̃, Ã).

Proof Firstly, by representing A as a C*-subalgebra of L(E) for some Hilbert space
E, we can realize HA ∼= L2(S1, A) in order to define the concept of a measurable
A-valued function. Thus A becomes a C*-subalgebra of L(L2(S1, E)) by acting
diagonally. In this way we see that C(S1, A) acts on HA, and hence so do 
±(A) .
To see that 
−(A) acts transitively, observe that removal of a finite number of zν for
ν ≥ 0, and replacing these by a finite number of zν for ν < 0, we eventually obtain
subspaces W̃′ in the orbit of 
−(A) which are dense subspaces in Gr( p̃, Ã) . So 
−(A)

acts transitively, essentially by adding ever more powers of z . Observe that HA is a
right A-submodule and 
−(A) acts on the left in producing a right A-submodule.

Given that 
−(A) acts transitively, if g ∈ 
−(A), and W̃ ∈ Gr( p̃, Ã) with gW̃ =
W̃, then let us choose h ∈ 
−(A) such that hH+ = W̃. We then have (h−1gh)H+ =
H+, and since 1 ∈ H+, it follows that h−1gh ∈ H+. Then, all the negative Fourier
coefficients for h−1gh must vanish, and therefore h−1gh = 1. This immediately yields
g = 1, and therefore the action of 
−(A) is free as well as transitive. ��

We next define a Baker function in relationship to this generalization



Acta Appl Math (2006) 92: 241-267 255

Definition 6.4 Taking W̃ ∈ Gr( p̃, Ã) in the big cell and g ∈ 
+(A), consider the
orthogonal projection

p̃g
+ : g−1(W̃) −→ H+ , p̃g

+ ∈ Fred(HA). (6.3)

The Baker function associated to W̃ is defined by

ψW̃ = ( p̃g
+)−1(1 ⊗ A) = W̃exz. (6.4)

Explicitly,

ψW̃ = ψW̃(x, z) = exz

(
1 +

∞∑

i=1

ai(x) z−i

)
, (6.5)

where now the ai are analytic functions on 
W̃+ (A) extending to meromorphic
functions on all of 
+(A).

Theorem 6.1 Given the Baker function ψW̃ associated to a subspace W̃ ∈ Gr( p̃, Ã),
the ring Â ⊂ B[∂−1] ⊗ A, conjugates into the Banach algebra Ã as a subring up to
constant coefficient operators.

Proof We follow the principles used in establishing Theorem 4.1, except that the
coefficient variables are taken to be in A, and we work with the 
±(A) and 
W̃+ (A) .
To proceed, we consider K ∈ B[∂−1] ⊗ A as given by

K = 1 +
∞∑

i=1

ai(x) ∂−i. (6.6)

Essentially the same argument used in proving Theorem 4.1 implies the conjugation
property, namely L = K(∂)K−1.

Since W̃ ∈ Gr( p̃, Ã) belongs to the big cell, the projection p̃+ ∈ Fred(HA), is an
isomorphism. Accordingly, we have W̃ = ghg H+ with hg ∈ 
−(A) . We recall now
the Baker function ψW̃ of Definition 6.4. Since by Lemma 6.1 the group 
−(A) acts
freely and transitively on Gr( p̃, Ã), and as L involves only derivatives with respect
to the x-variable, we obtain as before LψW̃ = zψW̃ . The remainder of the proof now
follows by applying the relevant parts of the proof of Theorem 4.1. with the obvious
modifications. ��

Remark 6.1 Recalling the earlier discussion, observe that the projection p̃g
+ ∈

Fred(HA) has a well-defined index α = Ind p̃g
+ ∈ K0(A), and accordingly the func-

tion ψW̃ = ( p̃g
+)−1(1 ⊗ A) is indexed by α ∈ K0(A).

7 Semigroups and a Parametrized Plücker Embedding

7.1 The Plücker Embedding

We begin by reviewing the case A = C. The (antisymmetric) Fock space of H (see
e.g. [31]) is defined by

F(H) =
⊕

n≥0

�n(H), �0(H) = C, �1(H) = H. (7.1)
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Let �± = F(H±). Recalling A = LJ(H), a ‘determinant’ mapping, det : V(p, A) →
�+, is defined as follows. Here an element w ∈ V(p, A) is taken to be an admissible
basis as above, so that given the pair (w, λ) ∈ V(p, A) × C, its image in �+ is
expressed as

λ
∑

[i]∈S
(det w[i]) f j1 ∧ f j2 ∧ · · · , (7.2)

where S is a certain indexing set [31]. Since (7.2) is defined up to a (nonzero)
determinant, the image is a line in �+ and so we have produced a well-defined map

det : V(p, A) → P(�+) ∼= P(�2(S)), (7.3)

which sends an admissible basis to a point in projective Fock space P(�+) . In
particular, (4.18) defines a global admissible basis (see [2, 32, 35]) and det in (7.2)
is definable via the Wronskian

(ψW ∧ ∂ψW ∧ · · · ∧ ∂k−1ψW ∧ · · · )|x = 0. (7.4)

On setting B = Ld(J)(�+) where d(J) denotes the induced operator on �+ under det
of the unitary J, we identify P(�+) with Gr(q, B), and thus we have the homogeneous
space representation

P(�+) = Gr(q, B) = V(q, B)/G(q), (7.5)

where q denotes the (unique) rank 1 projection in B corresponding to a line � in �+ .
For an admissible basis w ∈ V(p, A), the composition of assignments w �→ det w �→
q, defines an analytic injective map

V(p, h) : V(p, A) → P(B) ⊂ B, (7.6)

which descends to analytic map

Gr(p, h) : Gr(p, A) −→ Gr(q, B). (7.7)

The map Gr(p, h) is actually a holomorphic embedding of complex Hilbert manifolds
and is usually referred to as the infinite dimensional Plücker embedding (see [25, 31,
35]). Relative to (7.7) we will need the following technical feature. Let W = p(H) ∈
Gr(p, A) and � = q(B) ∈ Gr(q, B). Since Gr(p, h) is a holomorphic embedding, it
follows from (3.7) that the map of complex derivatives

HomC(W, W⊥) −→ HomC(�, �⊥),

pAp̂ −→ qBq̂,
(7.8)

is injective. Equivalently, the embedding is induced by the (holomorphic) sections
of the corresponding holomorphic line bundle DET∗ −→ Gr(p, A) endowed with a
Hilbert space structure on sections.

7.2 The τ -function

In the analysis and transformations of integrable systems the Plücker embedding
equations explicitly describe the orbit of the vacuum state (see e.g. [20, 27]). From
the embedding equations an essential feature known as the τ -function is derived. We
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recall now its definition. Relative to an admissible basis represented by w ∈ V(p, A),
the embedding Gr(p, h) leads to a function

Grw(p, h)(w′) = det 〈w, w′〉, (7.9)

where 〈w, w′〉 denotes the matrix whose (i, j)-entry is 〈wi, w
′
j〉. Denoting the vacuum

state (the canonical section of DET∗) by Gr1(p, h), the τ -function is defined as

τw(g) := 〈Gr1(p, h), g Grw(p, h)〉, g ∈ 
+. (7.10)

We recall that the Baker function ψW has the property of extending to an analytic
function of z in |z| > 1 (fixing g ∈ 
W+ ). For ζ ∈ C satisfying |ζ | > 1, the map defined
by qζ (z) = 1 − zζ−1, leads to the notable relationship between the Baker and τ -
functions [35] Proposition 5.14:

ψW(g, ζ ) = τW(gqζ )(τW(g))−1. (7.11)

7.3 Semigroups and the Determinant

To proceed, let us consider an ambient subsemigroup structure about V(p, A)

along with its induced image under det. Specifically, we introduce multiplicative
subsemigroups denoted S and T such that V(p, A) ⊂ S ⊆ A, where S consists of
elements of A admitting a determinant (recall that V(p, A) admits determinants via
the admissible bases), and T is the image of S under det, so that det(V(p, A)) ⊂ T ⊆
B. This provides an analytic multiplicative subsemigroup homomorphism h : S −→
T induced by det, where for p ∈ Sim(p+, A), q = h(p), we have a commutative
diagram with vertical maps inclusions

S
h

�� T

V(p, A)
V(p,h)=det

��

��

V(q, B).

��
(7.12)

Specifically, the homomorphism h can be identified with the infinite exterior
product �∞ leading to a continuous homomorphism of multiplicative semigroups.
Note that q = h(p) is identifiable with the rank 1 projection in P(L(�+)) induced by
det as previously.

We recall Ã = A ⊗ A where A is a (unital) C*-algebra, and set B̃ = B ⊗ A.
Given w ∈ V(p, A) ⊂ A and a ∈ A, consider the assignment w ⊗ a �→ (det w) ⊗ a

extending det as A-valued. Further, we set S̃ = S ⊗ A and T̃ = T ⊗ A, and let
h̃ : S̃ −→ T̃ be the multiplicative subsemigroup homomorphism induced by the
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infinite exterior product �∞. By the essential functoriality of �∞, the following
diagram

S
h

��

��

T

��

S̃
h̃

�� T̃

(7.13)

commutes where the vertical arrows represent inclusions into their respective tensor
products.

Continuing, let

d̃et = h̃|V( p̃, Ã) : V( p̃, Ã) −→ V(q̃, B̃), (7.14)

where relative to the orthogonal projection p̃+ ∈ Fred(HA), we have taken p̃ ∈
Sim( p̃+, Ã), and q̃ = h̃( p̃). Using the same principles as before we obtain a com-
mutative diagram

S̃
h̃

�� T̃

V( p̃, Ã)

V( p̃,h̃)=d̃et
��

��

V(q̃, B̃)

��
(7.15)

Lemma 7.1 Let h : S̃ −→ T̃ be the multiplicative semigroup homomorphism which,
as above, assigns a given p̃ ∈ P(S̃) to a rank 1 projection q̃ = h̃( p̃) in P(T̃). Then the
following diagram is commutative:

V( p̃, Ã)

V( p̃,h̃)

��

�

��

V(q̃, B̃)

�

��

Gr( p̃, Ã)

Gr( p̃,h̃)

�� Gr(q̃, B̃)

(7.16)

In particular, if h̃ is analytic (resp. smooth), then the maps V( p̃, h̃) and Gr( p̃, h̃) are
also analytic (resp. smooth).

Proof Keeping in mind the commutativity of (7.15), we can take h̃|V( p̃, Ã) and
restrict matters to d̃et. Then it follows from [10] Theorem 7.1 that if p̃, p̃1 ∈ P(Ã) and
�( p̃1) ∈ Gr( p̃, Ã), the restriction �|P(Ã) ∩ V( p̃1, Ã) is an analytic diffeomorphism
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onto an open subset of Gr( p̃, Ã) containing �( p̃1), thus providing a natural analytic
local section for the analytic map � : P(Ã) −→ Gr(Ã) through p̃1 ∈ P(Ã).

Since the spaces V( p̃, Ã), Gr( p̃, Ã), etc. are defined by the multiplicative struc-
ture, then the above diagram commutes for such a multiplicative map as given. Thus
when h̃ is analytic, V( p̃, h̃), and consequently Gr( p̃, h̃), are also analytic; the same
argument applies when h̃ is smooth. ��

7.4 A Parametrized Plücker Embedding

Suppose now A is a (unital) commutative C*-algebra. Then A ∼= C(Y), where Y is a
compact Hausdorff space. In which case (6.1) shapes up as

Ã = A ⊗ A = {continuous functions Y −→ A = LJ(H)}
∼= LJ(HA) ∩ {continuous functions Y −→ L(H)}, (7.17)

for which the ‖ ‖2-trace in (3.4) is regarded as continuous as a function of Y. We make
the appropriate parametrization by Y of the groups 
± in Section 4 by specializing
Definitions 6.1–6.3 accordingly:

Definition 7.1 Let 
+(Y) be the group of maps g : D × Y −→ C∗ such that g is
continuous in y for each y ∈ Y, g(z, y) is holomorphic in z ∈ D, and g(0, y) = 1, for
each y ∈ Y.

Definition 7.2 Let 
−(Y) be the group of maps g : (C\Int D) × Y −→ C∗ such that
g is continuous in y for each y ∈ Y, g(z, y) is holomorphic in z ∈ C\Int D, and
g(∞, y) = 1, for each y ∈ Y.

Definition 7.3 Let 
W̃+ (Y) be a dense open subset of 
+(Y) defined by


W̃
+ (Y) = {g ∈ 
+(Y) : g−1W̃ is transverse to H−}.

Theorem 7.1 The map d̃et = V( p̃, h̃) : V( p̃, Ã) −→ V(q̃, B̃) induces an analytic (i.e.
holomorphic) embedding

Gr( p̃, h̃) : Gr( p̃, Ã) −→ Gr(q̃, B̃). (7.18)

In fact, the map Gr( p̃, h̃) is realized as a family of Y-parametrized Plücker embeddings
given by the map Gr(p, h) in (7.7).

Proof Taking W̃ ∈ Gr( p̃, Ã) in the big cell, let us consider the Baker function ψW̃
given by

ψW̃ = ψW̃(x, y, z) = exz
(

1 +
∞∑

i=1

ai(x, y) z−i
)

, (x, y) ∈ C × Y, (7.19)

where now the ai are analytic functions on 
W̃+ (Y) extending to meromorphic func-
tions on all of 
+(Y). By Lemma 6.1, 
−(Y) acts freely and transitively on Gr( p̃, Ã),
and so convergence and differentiation is then uniform over the Y-variables, es-
sentially by extending the action of 
− pointwise. Since we are dealing only with
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derivatives at x = 0, and this differentiation is uniform over the (parameter) Y-
variables, (7.19) (c.f. (4.18)) then yields a global admissible basis for W̃ as given by
the vectors

(ψW̃, ∂ψW̃, . . . , ∂k−1ψW̃, . . .)|x=0. (7.20)

Then d̃et : V( p̃, Ã) −→ V(q̃, B̃) is defined via the Wronskian

(ψW̃ ∧ ∂ψW̃ ∧ · · · ∧ ∂k−1ψW̃ ∧ · · · )|x=0. (7.21)

Now we already know that h : S −→ T is injective, and by the property of �∞, then
so too is h̃ : S̃ −→ T̃. In particular, the analyticity of h induces the same for h̃. Thus
by Lemma 7.1, Gr( p̃, h̃) is analytic and injective. With respect to complex derivatives
we already have pAp̂ −→ qBq̂ injective, and by extension to the tensor product,
the same is true for p̃Ã(̂ p̃) −→ q̃B̃(̂q̃) which proves that Gr( p̃, h̃) is an analytic
embedding. Since by construction y ∈ Y is effectively a parameter throughout, the
last statement follows. ��

Remark 7.1 Theorem 7.1 can be compared with the results of [12] Section 4 which
give some criteria for embeddings of Grassmannians over arbitrary Banachable
algebras.

Remark 7.2 Note that in view of Theorem 7.1, the prevailing relation (7.11) between
the Baker and τ -function extends to a Y-parametrized relation.

8 Towards an Operator-valued Baker Function

In this section we outline an abstraction at the level of operator-valued functions.
An astute-minded reader will see that the idea requires replacing the variable z by a
single operator.

8.1 Laurent Series Generator

Definition 8.1 [4] Let A be a unital Fréchet algebra. An invertible element ζ ∈
G(A) ⊂ A is said to be a Laurent series generator for A if each a ∈ A is expressible
as

a =
∞∑

i=−∞
ai ζ i, (8.1)

for scalars ai, and the series converges absolutely with respect to each continuous
seminorm on A. We say that A has the unique expression property if such a
representation is always unique.

As shown in [4], such algebras A with a Laurent series generator include algebras
which are isomorphic to various types of function algebras defined on S1 or on the
annulus.



Acta Appl Math (2006) 92: 241-267 261

8.2 Fredholm Operators on Banach Spaces

The next step involves introducing from [37] the notion of compact and Fredholm
operators between complex Banach spaces E and E′. Let K(E, E′) denote the
compact operators. The more general meaning of a Fredholm operator is here based
on the notion of ‘right and left aggregation’; we refer to [37] for details. An oper-
ator T ∈ Fred(E) is stable under compact perturbations and admits a well-defined
index given by Ind(T) = dim Ker T − codim Im T. The index Ind(T) is constant
on connected components, is invariant under compact perturbations, and satisfies
Ind(T1T2) = Ind(T1) + Ind(T2). Moreover, there is an induced homomorphism Ind :
Fred(E) → Z.

Let E be a complex Banach space admitting a decomposition of the type (2.10).
Let

Ĝ ⊂
{[

T1 ∗1

∗2 T2

]
: T1 ∈ Fred(F), T2 ∈ Fred(Fc)

}
, (8.2)

be a Banach Lie group that generates a Banach algebra A acting on E, but with
possibly a different norm. Here, ∗i for i = 1, 2 tentatively represent operators on E
of some specified class.

Suppose that Ĝ acts analytically on Gr(A) with a typical orbit denoted by
Ĝr(A). Fixing p ∈ P(A), let Ĝr(p, A) = Ĝr(A) ∩ Gr(p, A), and let Ĝrα(A) denote
a connected component of Ĝr(A) for which Ind T1 = α. Accordingly, we define
Ĝrα(p, A) = Ĝrα(A) ∩ Gr(p, A). The restriction Vα(p, A) = V(p, A)| Ĝrα(p, A),
thus provides a framing for elements of Ĝrα(p, A) [11].

8.3 Conjugation into the Banach Algebra A

Suppose now that A is a unital Banach algebra with Laurent series generator ζ

(with the unique expression property) acting cyclically on E. We observe that the
idempotents (projections) of A under the action form certain subspaces of the
complex Banach space E. We shall assume a decomposition as in (2.10), E = F ⊕ Fc

where the closed (splitting) subspaces F and Fc are specified as follows.
Let φ be a cyclic vector for this action and take F to be the closed linear span of

all vectors ζ iφ for i ≥ 0, and Fc the closed linear span of ζ iφ for i < 0 . With regards
to (8.2), we now take the operators ∗1 ∈ K(Fc, F) and ∗2 ∈ K(F, Fc).

Here we assume that a fixed p ∈ P(A) acts as the projection of E on F along Fc.
We take Ĝr(p, A) to be the Grassmannian consisting of subspaces W ∈ Gr(F, E)

where W = q(E) for q ∈ P(A) such that:

(1) The projection p1 = pq : W −→ F is in Fred(E), and
(2) The projection p2 = (1 − p)q : W −→ Fc is in K(E).

We define the big cell of Ĝr(p, A) as the collection of all subspaces W of E such that
p1 is an isomorphism.

Let D be the closed unit disc centered at the origin in C which contains the
spectrum of the generator ζ . We define 
̃+ to be the group of (invertible) holo-
morphic maps g : D −→ G(A), such that g(0) = 1, and define an action of 
̃+ on
F by g · v = g(ζ )v where g(ζ ) is given by the holomorphic functional calculus. We
also define 
̃− as the group of holomorphic maps of the form g( 1

z ) where g ∈ 
̃+,
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and it is assumed that 
̃− acts freely and transitively on Ĝr(F, E) = Ĝr(p, A), where
p ∈ Sim(p1, A).

As previously, we consider subspaces W ∈ Ĝr(p, A) of the form

W = ghg F, (8.3)

with g ∈ 
̃+ and hg ∈ 
̃− . Also for g ∈ 
̃+, we consider projections

pg
1 : g−1(W) −→ F , pg

1 ∈ Fred(E), (8.4)

and define


̃W
+ = {g ∈ 
̃+ : pg

1 is an isomorphism}. (8.5)

The operator-valued Baker function associated to W is defined as:

ψW = (pg
1)

−1(1) = Wexζ ,

= g(z)(1 +
∞∑

i=1

ai(g)ζ−i),
(8.6)

where g ∈ 
̃W+ and the ai are analytic functions on 
̃W+ extending to meromorphic
functions on all of 
̃+. By the same principles of Section 4 we obtain the equation
LψW = ζψW . Let α = Ind pg

+ and recall Â ⊂ B[∂−1]. Adopting the same strategies
used in establishing Theorems 4.1 and 6.1, leads to:

Proposition 8.1 Let A be a unital Banach algebra with Laurent series generator ζ

(with the unique expression property) acting cyclically on E. Given the Baker func-
tion ψW associated to a subspace W ∈ Ĝrα(p, A) as given by (8.3), the assignment
∂−1 �→ ζ induces a conjugation of Â into a subring of A up to constant coefficient
operators.

9 Rings of Formal Pseudodifferential Operators in Several Variables

9.1 Iterated Laurent Series

The several variables case differs implicitly from the 1-variable case considered so
far, and requires a different Grassmann model. We regard this as an area of potential
application of our extended coefficients. For now, we encode an existing algebraic
construction into our framework that we expect to develop in a future work. Our
approach is based to an extent on [28, 29] and also in view of related work of other
authors that is surveyed in [33] to which we refer for details.



Acta Appl Math (2006) 92: 241-267 263

Let A0 be an associative ring with derivation d : A0 −→ A0 . As a generalization
of an earlier section, we consider the ring A0[∂−1] of formal pseudodifferential
operators in A0 as a left A0-module of all formal expressions:

L =
N∑

i>−∞
ai ∂ i , ai ∈ A0. (9.1)

For a given a ∈ A0, we have

[∂, a] = ∂a − a∂ = d(a),

[∂−1, a] = ∂−1a − a∂−1 = −d(a)∂−2 + d2(a)∂−3 − . . . ,
(9.2)

Following [28], A0[∂−1] is an associative ring and moreover, the above construc-
tion can be iterated. Given N variables x1, . . . xN , let C((x1)) . . . ((xN)) be the
N-dimensional local field of iterated Laurent series where at stage i, the space
C((x1)) . . . ((xi)) is defined to be the quotient field of C((x1)) . . . ((xi−1))[[xi]].

On setting ∂i = ∂/∂xi, for 1 ≤ i ≤ N, we let

Q = C((x1)) . . . ((xN))((∂−1
1 )) . . . ((∂−1

N )),

E = C[[x1, . . . , xN]]((∂−1
1 )) . . . ((∂−1

N )).
(9.3)

Then E ⊂ Q is a subring and there is the following decomposition into non-negative
(+) and negative (−) orders of operators as given by:

Q = Q+ + Q− , E = E+ + E−, E± = E ∩ Q±. (9.4)

Following the conjugacy theorem of [28] (Theorem 1), we have:

Theorem 9.1 [28] Let L1 ∈ ∂1 + E−, . . . , LN ∈ ∂N + E− be operators satisfying the
commutativity relations [Li, L j] = 0, for 1 ≤ i, j ≤ N . Then there exists an operator
K ∈ 1 + E− , such that

L1 = K(∂1)K−1 , . . . , LN = K(∂N)K−1 . (9.5)

Let α = (α1, . . . , αn) be a multi-index such that ∂α = ∂
α1
1 · · · ∂αN

N . We will proceed
to the C[[x]]-module of partial differential operators

P =
{ ∑

α

aα ∂α : aα ∈ A0 , α ∈ Z

}
⊆ E . (9.6)

Since [∂i, ∂ j] = 0, it is a consequence of the Leibnitz rule that P is endowed with a
C-algebra structure. The residue of the operator L ∈ P is defined as

resP (L) = a−1 ... −1 ∈ C, (9.7)

and for L, M ∈ P , the pairing

〈L, M〉P = resP (LM), (9.8)

defines a nondegenerate bilinear form on P [28] (c.f. [34]).
In the following, C[[t]] denotes C[[{tα}]] the ring of Taylor series in {tα}, ∂α = ∂

∂ tα
,

and we take Lα to denote Lα1
1 · · · LαN

N .
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The KP-hierarchy for N variables consists of the following Lax system

∂α Li = [(Lα)+ , Li],
[Li, L j] = 0 (commutativity relations), (9.9)

for 1 ≤ i, j ≤ N , 0 ⊂ α, and for which

Li = ∂i +
∑

α

uiα(t) ∂α ∈ P ⊗ C[[t]]. (9.10)

Let V denote the vector space C((x1)) . . . ((xN)) of the iterated Laurent series, with
its filtration Vn = xn

N C((x1)) . . . ((xN−1))[[xN]], for n ∈ Z.
Suppose now A is a (unital) commutative ∗-algebra. Then A = V ⊗ A becomes an

A-module, and via the spatial correspondence, we have the Grassmannian Gr(L(V ⊗
A)) ∼= Gr(A).

Now we observe the following data (**) relative to the systems (9.9) and (9.10):

1. Let W0 = C[x−1
1 , . . . , x−1

N ] ⊗ A, and let Wc
0 ⊂ V ⊗ A be a complementary sub-

space such that W0 ⊕ Wc
0

∼= V ⊗ A.
2. Let F0 = Hom(W0, Ŵc

0) ⊂ Gr(V ⊗ A), where Ŵc
0 is a commensurable subspace

formed by taking a certain inverse limit just as in [29] (note that F0 here plays
the role of the ‘big cell’).

3. We have a nondegenerate bilinear A-valued form on P ⊗ A defined by:

〈L ⊗ a , M ⊗ b〉 = 〈L, M〉P (a∗b) ,

for L, M ∈ P and a, b ∈ A, that induces the same 〈 , 〉 on V ⊗ A, via ∂α �→ xα .

Theorem 9.2 Let A be a (unital) commutative ∗-algebra. In relationship to the Lax
systems (9.9) and (9.10), we recall the data (**) as above. Then there exists for a given
W ∈ F0 ⊂ Gr(A), a Baker (eigen)function ψW which induces a conjugation of the
ring P ⊗ C[[t]] ⊗ A of the operators Li, as a subring of constant coefficient operators
within the algebra A = L(V ⊗ A).

Proof The proof is a straightforward modification of the techniques of [29]. Firstly,
we establish a preliminary conjugation result. Consider the operators

Li = ∂i +
∑

α

uiα(t, a) ∂α ∈ P ⊗ C[[t]] ⊗ A , uiα(t, a) ∈ C[[t]] ⊗ A. (9.11)

Then there exists K ∈ 1 + P− ⊗ C[[t]] ⊗ A such that for 1 ≤ i ≤ N,

Li = K(∂i)K−1,

∂α K = −(K(∂α)K−1)− K. (9.12)

Equivalently, the operators {L1, . . . , LN} admit a wave function ψ(x, t, a)

satisfying:

Liψ = xi · ψ, 1 ≤ i ≤ N,

∂αψ = (Lα)+ψ, 0 ⊂ α. (9.13)
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The next step is to show that there exists a Baker function corresponding to a
point in Gr(A) that is indeed such a wave function, and one that can be implemented
so as to achieve the conjugation into the algebra A, just as for the one-variable case.
In order to see this, we introduce formal oscillating functions

φ(t, x, a) =
(

1 +
∑

0⊂α

uα(t, a) xα

)
eξ(t,x), (9.14)

where

eξ(t,x) := exp

⎛

⎝
∑

0⊂β

tβ x−β

⎞

⎠ , t = {tβ : 0 ⊂ β}, (9.15)

and uα(t, a) ∈ C[[{tα}0⊂α]] ⊗ A.
Relative to W ∈ Gr(A) we define the function ψW and a basis w = {wi}i∈I ∈

V(p, A), such that

ψW(t, x, a) =
∑

i∈I

tv(wi)wi, (9.16)

where v : A −→ ZN maps
∑

α uα xα to the multi-index α such that uα = 0 , ∀β < α.
Using the bilinear form on V ⊗ A in the data (**) 3., there is the following

‘orthogonality’ relation deduced from [29]. Relative to W ∈ F0 ⊂ Gr(A) in (**) 2.,
we have for all s, t:

〈ψW(t, x, a), φW(s, xN, a)〉 = 0. (9.17)

In particular, there exists a natural map from the set of such wave functions for
the KP(N) hierarchy to F0 ⊂ Gr(V), and conversely, if W ∈ F0, then the Baker
function corresponding to W is a wave function for this hierarchy (these facts follow
essentially from [29] Theorems 3.5 and 3.6). Thus we have established the desired
properties of the function ψW which implements the conjugation of P ⊗ C[[t]] ⊗ A
into a subring of A. ��
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